Oracle AI Vector Search: Vector Store
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads that allows you to query data based on semantics, rather than keywords. One of the biggest benefits of Oracle AI Vector Search is that semantic search on unstructured data can be combined with relational search on business data in one single system. This is not only powerful but also significantly more effective because you don't need to add a specialized vector database, eliminating the pain of data fragmentation between multiple systems.
In addition, your vectors can benefit from all of Oracle Database’s most powerful features, like the following:
- Partitioning Support
- Real Application Clusters scalability
- Exadata smart scans
- Shard processing across geographically distributed databases
- Transactions
- Parallel SQL
- Disaster recovery
- Security
- Oracle Machine Learning
- Oracle Graph Database
- Oracle Spatial and Graph
- Oracle Blockchain
- JSON
If you are just starting with Oracle Database, consider exploring the free Oracle 23 AI which provides a great introduction to setting up your database environment. While working with the database, it is often advisable to avoid using the system user by default; instead, you can create your own user for enhanced security and customization. For detailed steps on user creation, refer to our end-to-end guide which also shows how to set up a user in Oracle. Additionally, understanding user privileges is crucial for managing database security effectively. You can learn more about this topic in the official Oracle guide on administering user accounts and security.
Prerequisites for using Langchain with Oracle AI Vector Search
You'll need to install langchain-community
with pip install -qU langchain-community
to use this integration
Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search.
# pip install oracledb